AUTHOR
TITLE
SPONS AGENCY
POB DATE. NOTE

EDES PRICE DESCRIPTORS

IDENTIFIERS
Bonte; John L.; Davidscr, Arncló C. Alkalinity Analysis. Training Mcdule E.żC.2.77. Department cf Labor, hashingtcn, I.C. ; Icha State Dept. of Environmental cuality, Les Mcines. Sep 77
33p.: For related docurents, sé SE 024 249-254; Contains marginal legibility in transfarency masters

ABSTRACT

MF- $\$ 0.83 \mathrm{HC}-\$ 2 . \mathrm{C6}$ Flus Ecstage.
o*Chemical Analysis; Chemistry; *Instructicnal Materials; *Labcratcry Frccedures; *Laboratory Techniques; *Post Seccrdary fducaticn; Secondary Education: Units of Study *alkalinity: *Water IIfatuert

This document is an instructicnal moaule package prepared in objective fcrm fer use by an irstructcr familiar with the acid-base titrimetric procedure for deteraining the bydrcxide, carbonate and bicartcnate alkalinity cf a hater sarfle. Ircluded are objectives, an instructor guide, studert bardcuts and transparency masters. A video tafe is also availakle frcir the authcr. Ihis module consíders use of the pH meter, prefaraticr ard standardization cf reaqents, titration ano calculaticn cf results. (AxthcI/FE)

[^0]Frepared for the
Iowa Department of Environmental Quality Wallace State Office Building

Des Moines, Lowa 50319
by

John L. Bonte
Developer
Arnold C. Davidson
Project Director Clinton Community College
1000. Lincoln Boulevard

Clinton, Iowa 52732

3

The publication of these training materials was financially aided through a contract between the Iowa Department of Environmental Quality and the Office of Planning and Programming, using funds available under the Comprehensive Employment and Training Act of 1973. However, the opinions expressed herein do not necessarily reflect the position or policy of the U. S. Department of Labor, and no official endorsement by the U. S. Department of Labor should be inferred.

Module No:

Approx. Time:
3 hours
.

Module Title:
Alkalinity Analyspis
Submodule Title:

Topic:

Summary

Instructional Objective:
Upon "completion of this module the participant should be able to:

1. Operate and standardize a pH meter.
2. Determine hydroxide, carbonate, and bicarbonate alkalinity of a water sample.
3. Prepare and standardize all reagents needed for an alkalinity analysis.

Instructional Aids:
Transparencies Akl - Akg - softening videotape

Instructional Approach:

Lecture, discussion, videotape viewing, laboratory practir?.

References:

1. "Standard Methods for the examination of water and wastewater," 14th ed., pp. 278-282.
2. G.V.James, "Water Treatment," 3rd ed., London: Technical Press;
3.

Class Assignments:

Module No:
Module Title:
Alkalinity Analysis

Submodule Title:

Topic:
Definition of Alkalinity

Instructional Objective:
Upon completion of this module the participant should be able to:

1. Write chemical reactions which explain alkalinity.
2. Eipalin how alkalinity is used in water treatment.
3. Describe the difference between phenolophthalein and total alkalinity.
4. Describe the difference between hydroxide, bicarbonate, and carbonate alkalinity.
5. Relate pH to hydroxide and hydrogen ion concentrations.

Instructional Aids:
Transparency Akl - titration end points.
Transparency Ak2 - Relation of pH to concentration.
Softening $\dot{\text { video tape }}$
Instructional Apprcach:
Lecture - discussion

References:

1. Standard Methods, p. 273
2. James; p. 107-122.

Class Assignments:

page 6 of 19
Module No::
Module Title:
Àlkalinity Analysis

Submodule Title:

Topic:
Use of the pH meters
Instructional Objective:
Upon completion of this module the participant should be able to:

1. Describe the function of the pH meter.
2. Properly standardize the pH meter.
3. Determine the pH of a solution with a pH meter.
0°

Instructional Aids:
Transparency Ak3 - diagram of pH meter.

Instructional Approach:
Lecture - demonstration

References:
Operator's manual for pH meter used.

Clrss Assignments:

Module No:

Approx. Time:
0.25 Hours

Module Title:
Alkalinity Analysis

Submodule Title:

Topic:
Safety

Instructional Objective:
Upon completion of this module the participant should be able to:

1. Locate the following in the laboratory and demonstrate proper use: emergency shower, fire extinguisher, eye wash, first aid kit.
2. Select and use safety glasses, lab coat or apron and gloves in the appropriate situation.
3. Describe tile hazards associated with the chemicals used in the alkalinity determination.

Instructional Aids:
Handout of safety rules for the laboratory.

Instructional Approach:
Lecture/demonstration

References:

Basic laboratory skills module

Class Assignments:
Module No:
Ak Topic:

Safety

Instructor Notes:
Instructor Outline:

1. Point out to student all the safety equipment in the laboratory.
2. Point out the hazard of strong acids in the eye.
3. Electrical shock from pH meter and acid burns are the main hazards.

Module No:

Approx. Time:
0.5 hours

Module Title:
Aikalinity Analysis

Submodule Title:

Preparation of reagents

Instructional Objective:
Upon completion of this module the participant should be able to:

1. Prepare a 0.05° standard sodium carbonate solution and calculate its exact normality.
2. Prepare $0.1 N$ and $0.02 N$ hydrochloric acid solutions.

Instructional Aids:

Instructional Approach:
Laboratory practice

References:

Standard Methods, p. 279

Class Assignments:

Module No: Ak\quad, \quad Topic:	Topic: Preparation of reagents
Instructor Notes:	Instructor Outline:
1. 2.5 g per liter	1. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution: $\begin{aligned} & \mathrm{N}=0.05 \mathrm{~N} \\ & \mathrm{~N}=\mathrm{g} \mathrm{Na}_{2} \mathrm{CO}_{3} \text { per 2iter } \\ & 53 \end{aligned}$
$\begin{aligned} \text { 2.a. } & 0.1 \mathrm{~N} \mathrm{HCl} \\ \cdot & 8.3 \mathrm{ml} \mathrm{conHCl} \text { per } \\ & \text { liter } \\ \text { b. } & 0.02 \mathrm{~N} \mathrm{HCl} \\ & 200 \mathrm{ml} \mathrm{0.1} \mathrm{NHCl} \mathrm{per} \end{aligned}$	2. Acid a. 0.1N hydrochloric acid b. 0.02 N hydrociloric acid

Module No:

Approx. Time:
0.5 hours

Module Title:
Alkalinity Analysis
Submodule Title:
B

Topic:
Standardization of Acid

Instructional objective:
Upon completion of ${ }^{\circ} \pm$ his module the participant should be able to:

1. Properly titrate the standard $\mathrm{N}_{2} \mathrm{CO}_{3}$ solution with O .1 N HCl potentiometrically and construct a titration curve.
2. Identify inflection points.
3. Calculate from the titration curve the exact normality of the 0.1 NHCl and the 0.02 NHCl .

- 4. Calculate the CaCO_{3} equivalence of the HCl solutions.

Instructional Aids:
'Transparençy AK 4 - sample $\mathrm{Na}_{2} \mathrm{CO}_{3}$ titration curve.

Instructional Approach:
Laboratory practice

References:

Standard Methods p. 279

Class Assignments:

Module No:
$\stackrel{-}{9}$

Approx. Time:
0.5 hours

Module Title:
Alkalinity Analysis

Submodule Title:

Topic:
Titration of water samples

Instructional Objective:
Upon completion of this module the participant should be able to:

1. Properly titrate a water sample potentiometrically with standard HCl, construct a titration curve, and identify inflection points on the curve.
2. Properily titrate a water sample to a predetermined pH and record appropriate data.
3. Titraté a water sample of low alkalinity to determine亡otal alkalinity.

Instructional Aids:
Transparency Ak5 - sample titration curve

Instructional Approach:
Laboratory practice
-References:
.Standard Methods, p. 280.

Clas's Assignments:

Module No:
Ak

Titration of water samples
Instructor Outline:

1. Students perform titration and plot points. Point out inflections on sample curve.
2. Alternatively have students titrate to predetermined $\mathrm{pH}(8.3$ and 3.7-5.1) and compare with inflection-method:
3. For low alkalinity:
a. Use .02 N acid, 100 ml sample
b. titrate to 4.5 - record exact pH and volume added (B-ml)
c. titrate to exactly 0.3 pH units lower, reçord volume (C ml)

Totaî Alkalinity as $\mathrm{CaCO}_{3}=$

$$
\frac{(2 \mathrm{~B}-\mathrm{C}) \mathrm{XN}(\mathrm{HCl}) \times 50,000}{\mathrm{ml} \text { sample }}
$$

Module No:

Approx. Time:
0.5 hours

Module Title:
Alkalinity Analysis
Submodule Title:

Topic:
Calculations

Instructional Objective:
Upon completion of this module the participant should be able to:

1. From titration data, determine the phenophthalein and total alkalinity of a water sample.
2. From the data in l., determine the hydroxide, carbonate, and bicarbonate alkalinity of a-water sample.
3. Properly report the alkalinity of the water sample.

Instructional Aidst

Transparency Ak6 - Alkalinity Relationships

Instructional Approach:
Lecture/discussion

References:

Standard Methods, pp. 280-282

Class Assignments:

Alkalinity Analysis
Definition of alkalinity

1. Write a chemical equation which describes how the hydroxide ion reacts with the hydrogen ion to form water.
2. Alkalinity can be used in water softening along with hardness to determine:
a. the rustiness of the water.
b. the bacteria level
c. . the relative amounts of lime and soda ash to be used d. the potability of the water
3. The pH end point for pherolphthalein alkalinity is:
a. 8.3
b. 5.1
c. 4.5
¿. depends 'on conditions
4. Which of the following ions is titrated first in an alkalinity determination?
a. bicarbonate
b. hydroxide
c. carbonate
5. The larger the pH value, the \qquad the hydrogen ion concentration.

Use of the ph meter
6. The pH meter measures:
a. color
b. calcium'ion concentration:
c. temperature
d. hydrogen ion concentration
7. What solution is used to standardize the pH meter?
8. What type of electrode is placed in solution to measure pH ?

Safety.
9. What device in the lab can be used to wash off acid spilled all over your body?
10. \qquad can be used to protect hands from acid burns.
11. Why should the cord of the pH meter be grounded?

Preparation of Reagents
12. What is the Normality of a $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution in which. 2.5 g have been dissolved in water for a total volume of 1000 ml ?
13. To prepare a solution which is approximately 0.1 N in HCl how many milliliters of concentrated hydrochloric acid (l2 N) should be diluted to 1 liter?
a. 20 ml
b. 1 ml
c. 8.3 ml
d. 100 ml

Stan'dardization of Acid
14. When a $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution is titrated with 0.1 N HCl , what instrument is used to determine the points on the titration curve?
15. How many inflection points, will be observed in the titration curve of $\mathrm{Na}_{2} \mathrm{CO}_{3}$?
16. If 20 ml of HCl solution are required to titrate .40 ml of a $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution which contains $2.5 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$ per liter, what is the normality of the HCl solution?

- 17. What is the CaCO_{3} equivalence of a 0.1 N HCl solution?

Titration of water samples
18. In the potentiometric titration , the first end point is due to phenolphtalein aikalinity, the second end point is due to - _ alkalinity.
19. When a water sam, ie is titrated to a predetermined pH , what two pieces of data. should be, recorded?
20. What concentration acid should be used for titration of low alkalinity? :

Calculations
21. If it required 10 ml of acid which is equivalent to $5 \mathrm{mg} / \mathrm{ml}$ CaCO_{3} to titrate to pH 8.3 , calculate the phenolphtalein alkalinity of the 50 ml sample in $\mathrm{mg} / 1 \mathrm{CaCO}_{3}$.
22. Á sample has a phenolphthein alkalinity of zero(0) and à total alkalinity of $100 \mathrm{mg} / 1$ as CaCO_{3}, calculate the bicarbonate alkalinity.
23. Nane 3 pieces of data which should be recorded when reporting alkaḷinity.

ALKAIINITY ANALYSIS

EQUIPMENT AND SUPPLIES LIST

1. sodium carbonate $\mathrm{Na}_{2} \mathrm{CO}_{3}$
2. drying oven
3.- calcium chloride
3. dessicator
4. analytical balance
5. weighing bottle
6. 1 liter volumetric flask
7. distilled water
8. 10 ml graduated pipet
9. :concentrated hydrochloric acid
10. 100 ml pipet
11. 2 - 50 ml burets
12. pH meter and electrodes
13. pH 7 buffer
14. wash bottie
15. $250^{\circ} \mathrm{ml}$ beaker
16. 100 ml graduated cylinder
17. bunsen burner, ring stand
18. graph paper
19. 20 ml pipet
20. magnetic stirret and

Laboratory Procedure

I. Preparation of Reagents and Standards
A. Obtain the equipment, supplies, and chemicals iisted in tne "equipment" handout.
B. Prepare the following solutions:

1. $0.05 \mathrm{~N} \mathrm{Na}_{2} \mathrm{CO}_{3}$. In a weigning bottle dry 5 g primary standard sodium carbonate for 4 hours in an overn at $250^{\circ} \mathrm{C}$. Cool in a dessicator containing CaCl_{2}. Weigh the bottle on an alytical balance. Transfer 2.5g to a 1 र volumetric flask and fill to the mark with distilled water. Reweigh the bottle. The mass of the $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is equal to the difference of the two weighings. Call this. A.
2. 0.1 N HCl . Pipet 8.3 ml concentrated hydrochloric acid (HCl) into a 1 l volumetric flask. Dilute to the mark with adistilled water: Mix.
3. 0.02 N HCl . Tranfer 200 ml of the 0.1 NHCl to a l liter volumetric flask. Dilute to the mark with distilled water.
II. Standardizations
A. 0.1 NHCl

Fill a 50 ml buret with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. Fill another buret with O.INHCI. Standardize the pH meter with 7.0 pH buffer. Rinse the electrodes. Add $40.00 \mathrm{ml} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution to a 250 ml beaker. Add 60 ml distilled water. Insert pH electiodes. With constant stirring add HCl to a pH of 5.0. Remove electrodes, ;inse into beaker. Boil contents of beaker for 5 minutes. Allow beaker to cool to room temperature. Titrate further, 0.2 ml at a time. Plot $\mathrm{ml} \nabla \mathrm{s} . \mathrm{pH}$ on graph paper. Determine the inflection point (point of greatest slope). Report total ml required to reach inflection.from initial minus finall buret readings. Repeat procedure twice. Calculate the normality from the formala.

$$
N=\frac{A \times B}{53.0 \times C}
$$

Where: A.is the.g $\mathrm{Na}_{2} \mathrm{CO}_{3}$ used. B is the $\mathrm{ml} \mathrm{Na}_{2} \mathrm{CO}_{3}$ used. C is the ml acid used.
Calculate the average N.
B. 0.02 NHCl

Fill a 50 ml buret with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. Fill another buret with 0.02 N HCl solution? Add $15 \mathrm{ml} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution to a 250 ml beaker. Add $u 5 \mathrm{ml}$ distilled water. Titrate as in A above potentiometrically in triplicate. Record similar data and calculate normality (N) according to the same formula.
III. Potentiometric titration curve
A. Preparation, Fill a 50 ml buret with standardized 0.1 N .Cl. Rinse the electrodes of a standardized pH meter. Pipet 20 ml well-mixed sample containing $50-200 \mathrm{mg}$ total alkalinity into a. 250 ml beaker. Insert electrodes.
B. With constant stirring, add 0.2 mi increments of acid. Record the stabilized pH for each increment as well as the buret reading. Continue to pH 3.7 .
C. Prepare graph paper. Label the x-azis "ml acid added" a:d mark increments from 0 to the final buret reading. Label the y axis " pH^{\prime} and mark in crements from 0 to 12. Title the graph "Titration curve for slkalinity Analysis". Plot points recorded in B and connect with a smooth curve. Identify phenolphtalein inflection point (about pH 8.3) and total inflection point (about pH 5.0). Record ml HCl - required to reach each end point.
IV. Titration of low alkalinity sample.
A. Transfer 100 ml low alkalinity sample to a 250 ml meaker. Insert pH electrodes. Fill a 10 ml microburet with 0.02 N standard HCl. Add acid dropwize with stirring until the pH reads 4.5 .
B. Record the exact $\dot{\mathrm{pH}}$ and the exact number of milliliters asid required to reach this pH: Add acid dropwize with stirring to reach a pH value exactly 0.3 units less than, the first pH. Record the new buret reading.

V. Calculations

A. Potentiometric titration curve (high alkalinity)

1. To obtain phenolphthalein alkalinity, multiply the ml acid required to reach end point by 50,000 and by the exact acid normality and divide by 20.0 , the ml sample used.
2. To obtain total alkalinity, multiply the ml acid required to reach end point by 50,000 and by the exact acid normality and divide by 20.0 , the volume sample used.
3. Choose which of the following may be the case: $P=0, P$ less than half T. P equals $b_{2} T$, P greater than half T, P uquals T. Choose the appropriate horizontal row on the data sheet and calculate hydroxide, carbonate, and bxcarbonalte alkalinity where appropriate. (P equals phenolphthalein alkalinity. T equals total alkalinity).
4. Calculation of low alkalinity: Double the ml titrant required to reach initial pH subtract ml required to reach final pH. Multiply this result by the acid normality and 50,000. Divide by 100 , the sample volume.
5. Comment on sample.source, possible errors, and other suspected ions persent.

Alkalinity Analysis

Data Sheet

Low Alkalinity
Sample no.

High Alkalinity
Sample no. \qquad
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution
mass of full weighing bottle \qquad g
mass of weighing bottle with sample removed
mass of sample
Standardization of 0.1 NHCl
final $\mathrm{Na}_{2} \mathrm{CO}_{3}$ buret initial $\mathrm{Na}_{2} \mathrm{CO}_{\mathrm{ml}^{3} \mathrm{Na}_{2} \mathrm{CO}_{3} \text { buret }}$

III

Titration to inflection
ml

ml

pH

III
ml
pH

III ml
ml
ml
$N=(A x B) /(53 x C)$
Average N (HCl)
Standardization of 0.02 N HCl

$$
\begin{array}{rll}
\text { final } \mathrm{Na}_{2} & \mathrm{CO}_{3} & \text { buret } \\
\text { initial } \mathrm{Na}_{2} \mathrm{CO}_{3} & \text { buret } \\
\mathrm{B} \mathrm{mI} & \mathrm{Na}_{2} \mathrm{CO}_{3}
\end{array}
$$

I	II	III
ml	ml	ml
ml	ml	ml
$\ldots \mathrm{ml}$		ml

ml ml.

Titration to inflection ml

Attach titration curves circle inflection points.
'ml to inflection I
final HCl buret reading \qquad m1
initial HCl buret reading \qquad ml
ml Acid used

$$
N=(4 \times B) /(53 \times C)
$$

Average $\mathrm{N}(\mathrm{HCl})$

- Titration for curve: (attach plotted graph)

ml acid
pH
ml to reach end point (high alkalinity sample)

$$
\begin{aligned}
& \text { phenolphthalein } \begin{array}{l}
\text { total } \\
\text { ei }
\end{array} \quad \mathrm{ml} \\
&
\end{aligned}
$$

Titration of low alkalinity sample.
first pH
ml required
$=$ \qquad ml B
second pH \qquad
ml ${ }^{\circ} \mathrm{C}$
Calculations
High Alkalinity
phenolphthalein alkalinity

$$
\begin{aligned}
& \left(A_{p} \times N \times 50,000\right) 720.0= \\
& \text { total alkalinity } \\
& \left(A_{t} \times N \times 5 \mathrm{C}, 000\right) / 20: 0=\ldots \mathrm{mg} / 1 \text { as } \mathrm{CaCO}_{3} \\
& \mathrm{mg} / 1 \text { as } \mathrm{CaCO}_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Bicarbonate alkalinity }=
\end{aligned}
$$

Low alkalirity: Mity:
total alkainity $=\frac{(2 B-C) \times N \times 50,005}{100.0}=\frac{\mathrm{mg} / \mathrm{J}}{\mathrm{as} \mathrm{CaCO}} 3$

Comments:
\qquad Date \qquad

TRANSPARENOY AK I

Titrations end points

TRANSPARENCY AK
Relation of pH to Hydrogen and Hydroxide Ion Concentration (Molarity)

TRANSPARENCY AK 3 Diagram of pH Meter

> : TRANSFARENSY AK 4
> Somp.le $\mathrm{Na}_{2} \mathrm{CO}_{3}$ Titration Surve

31

TRANSPARENOY AK5
K Woter Sample Titration Surve s.

ml HCl
ERIC

TRANSPARENCY AK
Alkalinity Relationships
$P=$ phenolphthalein alkalinity(firsto inflection)
$T=$ total alkalinity(second inflection)

[^0]:

 * Refroductions supplied by EDis are the test that can te made *
 * from the original documert. . *

